4 research outputs found

    Resource Allocation in Multi-user MIMO Networks: Interference Management and Cooperative Communications

    Get PDF
    Nowadays, wireless communications are becoming so tightly integrated in our daily lives, especially with the global spread of laptops, tablets and smartphones. This has paved the way to dramatically increasing wireless network dimensions in terms of subscribers and amount of flowing data. Therefore, the two important fundamental requirements for the future 5G wireless networks are abilities to support high data traffic and exceedingly low latency. A likely candidate to fulfill these requirements is multicell multi-user multi-input multiple-output (MU-MIMO); also termed as coordinated multi-point (CoMP) transmission and reception. To achieve the highest possible performance in MU-MIMO networks, a properly designed resource allocation algorithm is needed. Moreover, with the rapidly growing data traffic, interference has become a major limitation in wireless networks. Interference alignment (IA) has been shown to significantly manage the interference and improve the network performance. However, how practically use IA to mitigate interference in a downlink MU-MIMO network still remains an open problem. In this dissertation, we improve the performance of MU-MIMO networks in terms of spectral efficiency, by designing and developing new beamforming algorithms that can efficiently mitigate the interference and allocate the resources. Then we mathematically analyze the performance improvement of MUMIMO networks employing proposed techniques. Fundamental relationships between network parameters and the network performance is revealed, which provide guidance on the wireless networks design. Finally, system level simulations are conducted to investigate the performance of the proposed strategies

    Brain-Inspired Wireless Communications: Where Reservoir Computing Meets MIMO-OFDM

    No full text
    Reservoir computing (RC) is a class of neuromorphic computing approaches that deals particularly well with time-series prediction tasks. It significantly reduces the training complexity of recurrent neural networks and is also suitable for hardware implementation whereby device physics are utilized in performing data processing. In this paper, the RC concept is applied to detecting a transmitted symbol in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Due to wireless propagation, the transmitted signal may undergo severe distortion before reaching the receiver. The nonlinear distortion introduced by the power amplifier at the transmitter may further complicate this process. Therefore, an efficient symbol detection strategy becomes critical. The conventional approach for symbol detection at the receiver requires accurate channel estimation of the underlying MIMO-OFDM system. However, in this paper, we introduce a novel symbol detection scheme where the estimation of the MIMO-OFDM channel becomes unnecessary. The introduced scheme utilizes an echo state network (ESN), which is a special class of RC. The ESN acts as a black box for system modeling purposes and can predict nonlinear dynamic systems in an efficient way. Simulation results for the uncoded bit error rate of nonlinear MIMO-OFDM systems show that the introduced scheme outperforms conventional symbol detection methods
    corecore